近年来,本人第1作者或所指导研究生发表的主要论文、授权的专利:
u 英文论文:
[1]
Linlan Liu, Weide Huang(研究生), Jian Shu and Hongjian Zhao.
Knowledge graph relation prediction based on graph transformation[J]. Applied
Intelligence, 2025, 55, 241. (SCI Ⅱ)
[2]
Yao Liang(研究生), Jian Shu, Linlan Liu. Attributed network
community detection based on graph contrastive learning and multi-objective
evolutionary algorithm [J].Neurocomputing, 2025,636,130029:1-17. (SCI Ⅱ)
[3]
Jian Shu, Yiling Zou(研究生), Hui Cui, Linlan Liu. Node
importance evaluation in heterogeneous network based on attention mechanism and
graph contrastive learning [J].Neurocomputing, 2025,626,129555:1-14. (SCI Ⅱ )
[4]
Jian Shu, Yao
Liang(研究生) , Wanli Ma, and Linlan Liu. Key Nodes
Evaluation Method Based on Combination Weighting VIKOR in Social Networks[J].
IEEE Transactions on Computational Social Systems, 2024,11(4),5404-5418..(SCI Ⅱ)
[5]
Pengtao Wang(研究生), Jian Shu and Linlan Liu. Heterogeneous
network link prediction based on network schema and cross-neighborhood attention[J].
Journal of King Saud University-Computer and Information Sciences, 2024, 36(7):
102154. (SCI Ⅱ)
[6]
Linlan, Liu, Yi Feng(研究生), Shengrong, Gao, Jian Shu.
Link quality estimation based on over-sampling and weighted random forest[J].
Computer Science and Information Systems, 2022, 19, (1):25-45. (SCI Ⅳ)
[7]
Linlan Liu, Mingxiao Niu(研究生), Chao Zhang, Jian Shu. Light
Gradient Boosting Machine-Based Link Quality Prediction for Wireless Sensor
Networks[J]. Wireless Communications and Mobile Computing, 2022, 8278087. (SCI Ⅳ)
[8]
Linlan Liu, Hui Lv(研究生), Jiangbo Xu. A Link Quality Estimation
Method Based on Improved Weighted Extreme Learning Machine[J]. IEEE ACCESS, 2021,
9(1):11378-11392. (SCI Ⅲ)
[9]
Linlan Liu, Wei Wang(研究生), Guirong Jiang, and Jiang
Zhang. Identifying Key Node in Multi-region Opportunistic Sensor Network based
on Improved TOPSIS[J]. Computer Science and Information Systems,, 2021, 18(3): 1041-1056.
(SCI Ⅳ)
[10]
Ziliang Liao(研究生), Linlan Liu , Yubin Chen. A novel
link prediction method for opportunistic networks based on random walk and a
deep belief network[J]. IEEE ACCESS, 2020, 7(1): 16236-16247. (SCI Ⅱ)
[11]
Yi Feng(研究生), Linlan Liu and Jian Shu. A link quality prediction
method for wireless sensor networks based on XGBoost [J]. IEEE ACCESS, 2019, 7(1):155229-155241.
(SCI Ⅱ)
[12]
Xionghui Luo(研究生), Linlan Liu, Jian Shu, Manar
Al-Kali. Link Quality Estimation Method for Wireless Sensor Networks Based on
Stacked Autoencoder[J]. IEEE ACCESS, 2019,7(1):21572-2158. (SCI Ⅱ)
[13]
Chenhao Jia(研究生), Linlan Liu, Xiaole Gu, and
Manlan Liu. A Novel Link Quality Prediction Algorithm for Wireless Sensor
Networks[J]. Computer Science and Information Systems, 2017, 14(3): 719–734. (SCI Ⅳ)
u 中文论文:
[1]
刘琳岚,崔辉(研究生),高浩轩,舒坚,江宇楠. 基于节点嵌入的机会网络节点重要度评估[J]. 北京邮电大学学报,2025,48(1):52-58. (信息通信领域T1)(EI源刊)
[2]
刘琳岚,唐家威(研究生),朱文俊.基于特征相似性的机会网络链路预测[J].工程科学与技术,2025,57(2):12–21. (EI源刊)
[3]
刘琳岚,冯振兴(研究生),舒坚. 基于时序图卷积的动态网络链路预测[J]. 计算机研究与发展,2024,61(2):518-528. (CCF A)
[4]
刘琳岚,谭镇阳(研究生),舒坚. 基于图神经网络的机会网络节点重要度评估方法[J]. 计算机研究与发展,2022,59(4),834-851. (CCF A)
[5]
刘琳岚,肖庭忠(研究生),舒坚,牛明晓. 基于门控循环单元的链路质量预测[J].工程科学与技术,2022,54(6):51-58. (EI源刊)
[6]
刘琳岚,肖庭忠(研究生),夏扬,舒坚. 基于超限快速决策树的链路质量评估[J]. 北京邮电大学学报,2021,44(3):125-130. (信息通信领域T1)(EI源刊)
[7]
舒坚,王启宁(研究生),刘琳岚. 基于深度图嵌入的无人机自组网链路预测[J]. 通信学报,2021,42(7):137-149. (信息通信领域T1,CCF T1)
[8]
刘琳岚,高声荣(研究生),舒坚. 基于随机森林的链路质量预测[J]. 通信学报,2019,40(4),202-211. (信息通信领域T1,CCF T1)
[9]
舒坚,刘满兰(研究生),尚亚青,陈宇斌,刘琳岚. 基于高斯过程回归的链路质量预测模型[J].通信学报,2018,39(7):148-156. (信息通信领域T1,CCF T1)
[10]
舒 坚,张学佩(研究生),刘琳岚,杨志勇. 基于深度卷积神经网络的多节点间链路预测方法[J].电子学报,2018,46(12):2970-2977. (CCF A)
[11]
刘琳岚,张江(研究生),舒坚,郭凯,孟令冲. 基于多属性决策的机会传感器网络关键节点预测[J].计算机研究与发展,2017,54(9):2021-2031. (CCF A)
u 授权专利:
[1]
施剑(研究生),刘琳岚,舒坚,一种基于异质图神经网络聚类的社交网络好友推荐方法,专利号:202411376289.7,授权日期:2025.03.04
[2]
严佳欣(研究生),刘琳岚,舒坚,一种基于双视角融合异质图神经网络的跨域商品推荐方法,专利号:202411405375.6,授权日期:2024.12.20
[3]
胡余强(研究生),刘琳岚,一种采用注意力机制的循环神经嵌入表示方法,专利号:202110998520.6,授权日期:2023.6.23
[4]
李佳浩(研究生),刘琳岚,一种采用图注意力网络与融合邻域的拓扑预测方法,专利号:202110859990.4,授权日期:2023.05.23
[5]
冯振兴(研究生),刘琳岚,一种基于高通滤波器和改进RNN的机会网络链路预测方法,专利号:202111016066.6,授权日期:2023.05.09
[6]
范杰彬(研究生),刘琳岚,结合BiLSTM和时间模式注意力的链路质量预测方法,专利号:202211186686.9,授权日期:2022.12.20
[7]
牛明晓(研究生),刘琳岚,一种采用叠层宽度学习的链路质量评估方法,专利号:202110874737.6,授权日期:2022.05.31
[8]
宋修洋(研究生),刘琳岚,一种采用知识图谱嵌入和时间卷积网络的社交网络链路预测方法,专利号:202010752425.3,授权日期:2022.03.01
[9]
张超(研究生),刘琳岚,舒坚,一种采用卷积长短期记忆的在线链路质量预测方法,专利号:201910913353.3,授权日期:2022.02.01
[10]
谭镇阳(研究生),刘琳岚,舒坚,一种基于排序学习的机会网络关键节点预测方法,专利号:201910913352.9,授权日期:2021.12.21
[11]
廖子粮(研究生),刘琳岚,舒坚,一种采用基于随机游走和深度信念网络的机会网络链路预测方法,专利号:201811160815.0,授权日期:2021.7.16